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A model has been developed for spinning mode acoustic radiation from the inlet of an air- 
craft engine. Consider the region bounded by the z-axis and the curve PABCDEF in Fig. 2. 
The model inlet is the solid of revolution obtained by rotating this region about the z-axis. 
The circular disk Sl generated by rotating the line segment Cl =OB separates the interior of 
the inlet from its exterior. The interior acoustic pressure consists of a pure azimuthal mode for 
a hardwall boundary condition. The interior and exterior acoustic pressures and their normal 
derivatives are matched on Sl. A hardwall boundary condition is applied on the surface S2 
generated by rotating the curve C2 = BCDEF. The governing boundary value problem for the 
Helmholtz equation is first converted into an integral equation for the unknown acoustic 
pressure on Sl + S2, and then the azimuthal dependence is integrated out yielding a one- 
dimensional integral equation over Cl + C2. We approximate the pressure on Cl by a trun- 
cated interior modal expansion and on C2 by a linear spline. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Methods to suppress aircraft engine noise have included the development of 
acoustics linears, high Mach number inlets, and the use of inlet geometry to redirect 
the sound. Experiments with and without flow have been conducted at Langley 
Research Center [l, 21 to study these methods. In particular, in July of 1982 
Richard Silcox [2] examined the effect of inlet geometry on the reflected and 
radiated acoustic fields; this paper describes a mathematical model for the no-flow 
experiments. 

The experiments of Silcox were designed around the spinning mode synthesizer 
(SMS). Figure 1 shows a plan view of this facility in the Langley Research Center 
Aircraft Noise Reduction Laboratory. The SMS can excite a nearly pure (20-30 dB 
isolation) azimuthal mode inside the hard cylindrical duct which pierces the wall of 
the anechoic room. By attaching various test inlets to the end of this duct, inlet 
geometry can be varied. 

* Research was supported by the National Aeronautics and Space Administration under NASA Con- 
tracts NASl-17130 and NASl-16394 while the author was in residence at the Institute for Computer 
Applications in Science and Engineering, NASA Langley Research Center, Hampton, Va. 23665. 
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FIG. 1. Plan view of SMS/flow duct facility in Aircraft Noise Reduction Laboratory. 

We attempt to retain the essential features of this experiental setup in our model 
inlet. Consider the region bounded by the z-axis and the curve PABCDEF in Fig. 2. 
The model inlet is the solid of revolution obtained by rotating this region about the 
z-axis. The circular disk Sl generated by rotating the line segment Cl = OB 
separates the interior of the inlet from its exterior. The experimental test inlet is 
modeled by the surface produced by rotating the curve BCD. The revolution of 
DEF generates a termination for the model inlet. We denote by S2 the surface 
obtained by rotating C2 = BCDEF. 

To model the SMS the acoustic pressure in the interior of the inlet consists of a 
pure, cylindrical azimuthal mode for the Helmholtz equation with hardwall boun- 
dary condition. In the exterior region the pressure is required to satisfy the 
Helmholtz equation and the radiation condition at infinity. The interior and 
exterior pressures and their normal derivatives are matched on Sl. A hardwall 
boundary condition is applied on S2. This boundary value problem is converted 
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into an integral equation over Sl + S2 using Helmholtz’ formula. The unknowns in 
the equation are the complex pressure on S2 and the reflection coefhcients in the 
interior modal expansion. By assuming a pure azimuthal mode excitation, it is 
possible to integrate out the azimuthal dependence which yields a one-dimensional 
integral equation at the expense of a somewhat more complicated kernel. This 
model was suggested by the aproach of Kagawa et. al. [S] to loudspeaker design. 

We note that uniqueness holds for the boundary value problem if the surface 
generated by ABCDEF is smooth (see Section 6); however, uniqueness does not 
hold for the integral equation if the wave number of the excitation is an eigenvalue 
for the Helmholtz equation in the interior of Sl + S2 with Dirichlet boundary con- 
dition. Numerically, we observe that, when discretized, the resulting linear system 
becomes increasingly ill-conditioned as an interior eigenvalue is approached. One 
effective method of removing this difficulty is to replace the free space Green’s 
function in Helmholtz’ formula by a modified Green’s function (see [l&19], see 
also [14, 151). Since the wave numbers of interest did not yield ill-conditioned 
linear system in our work, we did not use the modified Green’s function approach. 

The numerical method used is collocation. The unknown pressure on Cl (and its 
normal derivative) is approximated by a finite Bessel series which is a truncation of 
the interior modal expansion. The unknown pressure on C2 is approximated by a 
linear spline. The absolute error in the solution is estimated at the knots of the 
spline and this information is used to recommend the number of knots required for 
a given error tolerance on C2. This information can also be used to distribute the 
recommended number of knots to achieve an equal distribution of the absolute 
error. This is useful if it should be necessary to run the code a second time in order 
to achieve a better error performance. The code also provides (optionally) for one 
step of Neumann iteration. This yields a natural interpolation formula for the 
pressure and gives an approximation with the same smoothness as the exact 
solution. Finally, Helmholtz’ formula is used to compute the pressure on a semicir- 
cle in front of the inlet for comparison with experimental results. 

This paper explores numerically the nonstandard boundary value problem 
generated by our model, the knot redistribution scheme suggested by a theorem of 
de Boor, and the use of a two-dimensional adaptive integrator to estimate the 
oscillatory and sometimes singular integrals that arise. We point out that duct 
acoustics has been studied extensively in recent years, The reader is referred to [3] 
for a bibliography and a discussion of the various numerical methods which have 
been used. 

2. THE MODEL 

Let a denote the interior radius (a=0.15 m) of the test inlet in Fig. 1 and 
- - introduce a cylindrical coordinate system (z, r, 0) with origin 0 and positive Z-axis 

pointing out of the model inlet. Let o denote the angular frequency of the 

SSl/64/2-I2 
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excitation, c the speed of sound, and E= o/c the reduced wave number. We will use 
the dimensionless coordinates z =,?/a and r = f/a and the parameter k= hYa. The 
model inlet in the (z, r, 0) coordinate system is indicated in Fig. 2. As explained in 
Section 1, the circular disk Sl is obtained by rotating the line segment Cl = OB 
about the z-axis, while surface S2 is obtained by rotating C2 = BCDEF about the 
z-axis. In this section we will assume that the surface generated by rotating 
ABCDEF about the z-axis is Cr. 

Let 52 denote the exterior of Sl + S2 and let D denote the interior of Sl + S2. We 
denote complex pressure by @(z, r, 0) epi”” where 

@ = 4, z(A)<z<O, r-6 1 

= *, in Q, 

where z(A) < 0 denotes the z-coordinate of point A in Fig. 2. We note that the 
acoustic pressure obtained by this model is independent of z(A). For a fixed 
positive integer m, we model the SMS by using the modal expansion 4 = &?“e with 

$= f (A(n) eiL(“)‘+ R(n) eciLcnJz) J,(,l(n) r). 
il=O 

(2.1) 

This expansion comes from separation of variables in the reduced wave equation 
plus application of the hardwall boundary condition. In practice other “m” or 
azimuthal modes are present inside the duct but are at least 20 dB below the 
desired mode. In (2.1) J, denotes the ordinary Bessel function of the first kind and 
order m. The increasing sequence n(n) is defined by J,(n(n)) = 0, n 2 0. We assume 
that k # n(n) for all n and define NCT to be the integer satisfying 1(NCT - 1) < 
k < A(NCT). Then 

L(n) = (k’ - (n(n))2)“2, O<n<NCT-1 

-L(n) = ((J.(n))* - k2)lj2, n > NCT. 
(2.2) 

The radial modes corresponding to n = O,..., NCT - 1 are called cuton, the other 
cutoff, and NCT is the number of cuton radial modes. Complex R(n) is called the 
reflection coefficient of the nth radial mode, while complex A(n) is the amplitude of 
the forward propagating modes, since we assume that A(n) = 0 for n > NCT. This is 
a reasonable assumption since the plane of the 24 acoustic drivers of the SMS is 
about 13 duct interior diameters from the mouth of the experimental duct. We 
assume that the amplitudes A(n) are known for 0 <n 6 NCT - 1; i.e., in a given 
experiment this data is available from the SMS. The reflection coefficients R(n), 
n > 0, are unknowns. We note that the dependence on m in the above notation has 
been suppressed. 

The appropriate boundary value problem for the Helmholtz equation (the wave 
equation with the harmonic time dependence separated out) can be stated as 
follows: 
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Find $ in class C’(Q) n C’(a) such that A$ + k2tj = 0 in Sz, 

on S2, (2.3) 

$ satisfies the radiation condition at infinity, $ = 4, and a$/az = @/az on Sl. 
We use Helmholtz’ formula (an application of Green’s third identity) to convert 

(2.3) into an integral equation (see [6]). Let x denote the observation point and x’ 
the integration point. Then 

*(xl. 4x9 XEs2 

.27t, xESl+S2-(SlnS2) 

* 71, xESl+S2 

.o, XED 

(2.4) 

where i? = 1x - ~‘1. Here q’ denotes the normal to Sl + S2 pointing into D. Now 
uniqueness for (2.3) implies that $ = I&Z, r) eime. If we change to cylindrical coor- 
dinates in (2.4), multiply by ePime, and integrate from 8 = --71 to 0 = rc, we obtain 
the one-dimensional integral equation 

$k r), (z, r) E c2 - (Cl n C2) 

ccz, r)/Z (z, r) = Cl n C2 = - 
s 

’ r’ dr’ $ q&(0, r’) K(z, r; 0, r’) 
0 

4k r), (z, r) e Cl 

+I1 r’ dr’ $(O, r’) aZ, z, r; 0, r’) !F( 
0 

- s r’ ds’ tj(z’, r’) z, r; z’, r’), V-5) 
c2 

where 

K(z,r;z’,r’)=n-’ “cos(rr~Y)~ 
s 

ikR 

XC 
0 

(2.6) 

R = ((z -z’)’ + (r - r’)2 + 4rr’ sin2( Y/2))1’2, (2.7) 

s’ denotes arc length on C2, and $ denotes the normal to C2 pointing toward the 
inlet interior. We note that (2.5) appears to be homogeneous; however, +J in (2.1) is 
the sum of two terms, one of which is assumed known. This is the excitation term 

nzo A(n) ei”(“‘zJm(A(n) r) 

controlled by the SMS. 
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3. THE NUMERICAL METHOD 

Our numerical method is collocation. We require (2.5) to hold at specified 
(collocation) points on Cl + C2. We obtain a full, square complex linear system 
whose solution provides an approximate solution to (2.5). 

For the approximation of 4 we truncate (2.1) at n = Nl > NCT - 1, 

4 2: F (A(n) eiLcn” + R(n) eviLcn)‘) J,(l(n) r). 
n=O 

(3.1) 

To approximate $ on C2, we first parameterize this contour. We will refer to cer- 
tain values of this parameter t as knots. We require points B, C, D, E, and F to be 
knots. Additionally, knots are added so that BC is divided into K2 subintervals of 
equal length with respect to this parameter, CD into K3 subintervals, DE into K4 
subintervals, and EF into K5 subintervals. This yields N2 + 1 = K2 + K3 + 
K4 + K5 + 1 knots. 

We use N2 Chapeau functions, $Js) depending on arc length S, to approximate 
6. These basis functions are centered at the values of s corresponding to the knots, 
except for the knot corresponding to the endpoint F of C2. This is because the 
solution at F must be zero for azimuthal mode index m > 1. Hence, we write 

Nl+N2 

I) N C C(n) $,(s) on C2. (3.2) 
n=Nl+l 

We have experimented with two numerical procedures. 

I. (i) Collocate at (0, ro),..., (0, rN1) where 0 < r. < . . . < rNI < 1 satisfy 
J,,,(A(Nl + 1) ri) = 0; i.e., choose the r coordinates to be positive zeros of the first 
term left out in the truncation (3.1) with z = 0. 

(ii) Collocate at the points (zN, + r, yN1 + I ),..., (zN1 + N2, rN, + N2) 
corresponding to the centers of the Chapeau functions. 

II. (i) As in I. 
(ii) As in I but replace the equation generated by the collocation point at B 

by the continuity equation 

- F R(n) J,&(n)) + C(N1 + 1) = F A(n) J&(n)). 
II=0 II=0 

(3.3) 

Now let R= [R(O) ,..., R(N1)IT, C= [(Nl + 1) ,..., C(N1 + N2)lT, and A= 
[A(O),..., A(Nl We write the linear system resulting from I or II by 

CKTOT*[R, CIT = CRITE*A, (3.4) 

where CKTOT is a full, complex square matrix of order Nl + N2 + 1 and CRITE is 
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an (Nl + 1) x (Nl + N2 + 1) complex matrix. Writing (3.4) in block form for 
procedure I we have 

(3.5) 

where 

(3.6) 

g(L n), O<l,n<Nl 

b(L n), Nl+lGIGNl+N2,O<n<Nl 

= -Z(n) 1: r’ dr’ J,(A(n) r’) K(z,, r,; 0, r’), (3.7) 

9(&n)= -j; r’ dr’ J,(A(n) r’) g (zI, r,; 0, r’), 

Nl+l<I<Nl+N2,O<n<Nl, (3.8) 

WI, nh O<l<Nl,Nl+l<n<Nl+N2 
r’ ds’ $,(,s’) g (z~, r,; z’, r’), 

g(l, n), Nl+l<l,n<Nl+N2 w 
(3.9) 

L@(Nl+l,Nl+l)=$ 

9qz, 1) = 1, N1+2<I<Nl +N2 (3.10) 

9( i, j) = 0, Nl+l<i#j<Nl+N2. 

We note that F(Z, n) =0 for 0 d I< Nl + 1 because (aK/az’) (0, r; 0, r’) = 0 for 
O<r#r’dl. 

If procedure II is used, then row Nl + 1 in CKTOT and CRITE must be changed 
according to the continuity equation (3.3). 

The system (3.4) is solved NCT times with “basis” excitations A,,,..., A,,,-, 
which satisfy A,(i) = 6,. We call the resulting approximate solutions to (2.5) basis 
approximate solutions and denote them by & and @. 

Calculation of the basis far field (or basic first Neumann iterate) is done using 
the Helmholtz’ formula: 
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F'(z, r).2, (z, r, 8) in 52 

. 1, (z,r)ECl+C2-(ClnC2) 
1 
29 (z, r) = Cl n C2 

I 
1 

=-- 

0 
r’ dr’ g (0, r’) K(z, r; 0, r’) 

+I; - dK 
I’ dr’ &(O, r’) aZ, (z, r; 0, r’) 

- I r’ ds’ ll/‘(z’, r’) $( z, r; z’, r’). 
c2 - 

(3.11) 

Given the coefficients A(O),..., A(NCT - 1) of the desired excitation, we find the 
corresponding approximate solution to (2.5) and the far field (or first Neumann 
iterate) from 

NCT- 1 NCTP 1 

$= C A(i)f, l= 1 A(i)&! (3.12) 
i=O i=O 

The initial choice of Nl and N2 in (3.1) and (3.2) may not always be consistent 
with the desired accuracy. Also, the equispacing of the knots with respect to the 
parameter t is usually suboptimal. Section 6 discusses rules for choosing Nl and N2 
initially. We now present a procedure (see [7]) which uses the first approximate 
solution obtained to estimate the absolute error at the knots, and then recommends 
new values for K2, K3, K4, and K5 and a new distribution of the knots. The goal is 
to equally distribute the absolute error among the knots and to achieve a desired 
accuracy. 

Let us explain this procedure for BC which is initially divided into K2 subinter- 
vals. Let ti denote an interior knot and let hi and hi+ r denote the mesh spacing 
immediately to the left and right of ti. Set h = max{hj, hi+ r }. At ti we estimate the 
second derivative with respect to t of the jth basis approximate solution to (2.5) by 
interpolation with a parabola at ti-, , ti, and ti+, . Denote this estimate by d{ and 
set di = max{ Idi] : 0 d j < NCT - 1 }, We estimate the absolute error at t, by d,h*/2. 
Let AE denote the sum of the errors at the interior knots divided by the number of 
interior knots, K2 - 1. Let AER denote the desired absolute error, and set 

L2= [K2/JxE7E]+ 1, 

unless the result is 1, in which case set L2 = 2. 
Next, we partition BC into L2 subintervals so that the error is approximately the 

same at all interior knots. Set p = K2 and I = L2 and let t, ,..., tp + 1 denote the initial 
knots on BC. Set ul=tl,ui=(ti+ti+1)/2, i=2,...,p-1, ~~=f~+~. Let G denote 
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the piecewise constant function defined by G(t) = & for ui < t < ui+ , . For 
u,<u<u,, define 

y = j-U G(t) dt and Y, = s Up G(t) dt. 
UI UI 

Now y is increasing in u so let u = H(y) denote the inverse function. Construct I + 1 
new knots according to w1 = t,, oi = H((i - 1) ydl), i = 2 ,..., Z, o,+ 1 = tp+ 1. This 
procedure is based on our observation that in this problem the redistribution of a 
fixed number of knots has little effect on the average error AE. 

4. PROGRAMMING NOTES 

In Fig. 2 curve BC is the arc of an ellipse and curve CD is a line segment. Curve 
BCD is the exact test inlet contour, while curve DEF is an artificial termination for 
the inlet. We observed that changing the length of DE did not change the accurate 
digits in the computed reflection coefficients or in the computed acoustic pressure 
for z > 0. This was also true if E was replaced by J!? so that DE is a horizontal line 
segment and ,!?F is a quarter arc of a circle; i.e., the introduction of a corner at point 
D had an insignificant effect on the numerical results. The results reported below 
are for the computational exterior inlet contour BCDEF which is an approximation 
to the smooth contour BCDEF shown in Fig. 2. 

Almost all the execution time of our code is devoted to the subroutine which 
assembles the complex matrices CKTOT and CRITE in (3.4). The difficulty is that 
the oscillatory and singular double integrals in (3.7k(3.9) must be computed. We 
use adaptive integration which is ideal for this type of behaviour, but expensive. 
Alternatively, we could have developed a suitable product formula and then used 
the Nystrom method instead of collocation. 

We have separated the integrands in (3.7)-(3.9) into a bounded part and a 
singular part corresponding to the axisymmetric potential equation. 

Let p = ((r’ - rr)’ + (z’ - z,)‘)li2 and p = ((r’ + rr)2 + (z’ - z,)‘)“~, let c = kR/2, 
q’ = (N,., N,.), and let X and 8 denote the complete elliptic integrals of the first 
and second kinds as functions of the complementary parameter m, = p2/p2 (see 
Ck 91). 

Then in (3.7) we have 

B(l, n) = -y 1’ r’ dr’ J,,,(A(n) r’) 
0 

x 
5 

z dY(cos(mY)(e’kR -l)+cos(mY)-1)/R 
0 

Lqn) 1 
- - j 

71 0 
r’ dr’ J,(A(n) r’) j: $ 
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iL(n)k 1 =-- s Y’ dr’ J,(A(n) r’) 
7c 0 

x .r i dY(icos(mY) sin([) 8 - sin2(mY/2))/j 

2&(n) 1 
-- s r’ dr’ J,(L(n) r’) X(m,)/& 

~ 0 

while in (3.9) we have 

V(l, n) = n-’ !;, r’ ds’ $,(s’) 

+(cos(mY)-l)~- 
a?,f R 

+n-’ j 
c2 

r’ ds’ tj,(s’) 1’ dY$k 
0 

kZ 
=- 

s 2n c2 
r’ ds’ $,(s’) 

. “dY(N,(z’-z,)+N,(r’-r,+2r,sin2(Y/2))) s 0 

. 
i 

i cos(m Y) eis 
( 

rcost;sinrii~)+(sin(~““)21 

+N&,-z’))j$+ N,(b(m,)-X(m,))}. 

For the evaluation of J,, .I,, m 3 2, X(m,), and a(~,) we use the LRC library 
routines BJlR, BKIR, ELIPKC, and ELIPEC. For the evaluation of the one- 
dimensional integrals we use the LRC library routine CADRE which is a 
modification of an algorithm due to de Boor [lo]. For the double integrals we use 
the LRC library routine CAREDB which computes the integral as iterated single 
integrals with the single integrals computed as in CADRE. 

CADRE is an adaptive cautious Romberg extrapolation routine which is 
designed to identify certain tyes of integrand behaviour by examining a ratio based 
on the previous three trapezoidal sums. We split the integrals so that the 
singularities are endpoint singularities. If such a singularity is detected, CADRE 
switches to a process similar to Aitken’s 6* process to estimate the integral and 
evaluate the error. As a result of this switching, we have observed that execution 
times decrease with the error tolerances. We use EPS( 1) = EPS(2) = E - 5, where 
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EPS(l) is the maximum allowable relative error and EPS(2) the maximum 
allowable error. These remarks also hold for CAREDB. Adaptive integration is par- 
ticularly suited to oscillatory and (or) singular integrals. It offers the possibility of 
constructing a test code for an integral equation method in a relatively short time. 

Once the linear system (3.4) is assembled, it is solved using the LRC library 
routine CXGCOIT. This subroutine performs an LU decomposition, solves by 
forward and backward substitution, and estimates the condition number 
(CONDNUM) of CKTOT in the l-norm. Optionally, iterative refinement can be 
performed (see [ 111). For more details see [ 121. 

5. NUMERICAL RESULTS 

All computations were performed on a CDC Cyber 175 at NASA Langley 
Research Center. We give results for the programs which collocate at Cl n C2 
instead of demanding the continuity equation (3.3) hold. We have found little dif- 
ference in the outputs of these two sets of programs. 

For a given azimuthal mode index m, it is best to start with a value of k = ka so 
that one mode is cuton (NCT = 1) and then increase k to the desired level. Good 
starting values then are Nl = NCT + 5 and K2 = 20, K3 = 10, K4 = 10, K5 = 7. Our 
code recommends new values for K2,..., K5 with respect to a user-supplied 
tolerance. The user has the option of running the code again with these new values. 
We have provided a continuity check which outputs the modulus of the difference 
in the two sides of (3.3) for an approximate solution. If this continuity check is 
greater than the error tolerance, then Nl can be increased. The error estimates on 
C2 and the continuity check are a reasonable indication of the accuracy attained. 
Of course, the condition number and the accuracy with which CKTOT and CRITE 
are computed must also be considered. 

Tables I and II present some of our numerical results. Table I shows results for 
m = 1 and k = Ea = 2.66 and an increasing sequence of values for Nl + N2. CONT 
is the value of the continuity check. The error in jR(O)( and the error at Cl n C2 
are estimated by comparison with the case Nl + N2 = 78. 

TABLE I 

Nl 

Maximum 
Angle Error Error Error 

N2 CONDUM CONT INO)l R(O) IW)l ClnC2 est. C2 

6 18 29 0.0016 0.3555 - 20.16 0.011 0.0077 0.0080 
2 34 26.8 0.006 0.3479 -20.13 0.0029 0.0012 0.0021 
6 34 34.1 0.00076 0.3476 -20.17 0.0027 0.0015 0.0019 

10 34 41.2 0.00044 0.3475 -20.17 0.0026 0.0019 0.0019 
6 68 47.9 0.0011 0.345 1 - 20.00 0.000043 0.00037 0.00051 

10 68 54.2 0.00038 0.3451 - 20.00 
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TABLE II 

Max Far Field SPL = 0 dB 

k=l& Coefficient 
Numerical 

dB Angle ( ” ) 
Experimental 

dB 

2.66 40) 
R(O) 

3.20 A(O) 
NO) 

5.54 40) 
R(O) 
41) 
R(1) 

6.50 40) 
R(O) 
41) 
R(1) 

7.68 A(O) 
R(O) 
41) 
R(1) 

36.0 0 
26.8 - 20.2 

33.8 
18.1 kO.2 

24.4 
2.2 + 1.64 

37.8 
28.5 

23.9 
- 9.2 k 4.3 

34.5 
- 1.3 * 1.7 

23.4 
- 5.4 + 2.2 

33.0 
-4* 1.2 

0 
25.2 

-8.4 
29.8 

- 139.1 
141.3 

70.4 
19.9 

-64 
-54 

- 159.6 
- 168.2 

56.6 
-5.7 

36.1 
27.0 

32.6 
18.5 

25.8 
18.3 
39.2 
29.6 

22.9 
9.9 

33.5 
9.9 

23.5 
3.4 

33.1 
9.5 

Table II gives for m = 1 a comparison of experimental and numerical results for 
k = 2.66, 3.20, 5.54, 6.50, and 7.68. Some of these results are in close agreement; for 
example, for k=2.66, we have IR(O)l/lA(O)l =0.348 (numerical) and 0.35 
(experimental). However, for k = 3.20, we have lR(O)l/l,4(0)1 = 0.164, while the 
experimental value is 0.196. Our error tolerance here is 0.002. The continuity check 
and error estimates on C2 are consistent with this tolerance. Generally, when R(i) is 
small compared to max(lA(O)I,..., IA(NCT- 1)l }, we have the greatest relative 
error. We have indicated the error bracket on some of these entries in Table II. But 

-100 -50 -a 20 60 ICC 
OEGREES 

FIG. 3. m=l, k=2.66, NCT=l. 
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FIG. 4. rn = 1, k = 3.20, NCT = 1. 

FIG. 5. tn= 1, k= 5.54, NCT= 2. 
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FIG. 7. m=l, k=7.68, NCT=2 

these brackets do not account for some of the discrepancies. We note that the dB 
levels in Table II are referenced so that the peak sound pressure level in the far field 
is 0 dB (for both experimental and numerical results). 

Figures 3, 4, 5, 6, and 7 give far field patterns computed on a semicircle of radius 
20 in front of the duct (see Fig. 1). We note the good agreement between the 
numerical and experimental curves. The small oscillations in the experimental curve 
may be due to reflections, while the lack of symmetry indicates less than complete 
isolation of the desired arimuthal mode. We compute and store a basis approximate 
solution and far field. Then we can interactively produce approximate solutions and 
far field patterns for any given excitation strengths A(O),..., A(NCT - 1). Thus we 
have an NCT parameter family of possible far fields that can be generated quickly. 
It is possible, for example, to make the - 30 dB downward spikes in the k = 6.50 
case almost completely disappear by choice of excitation strengths. But roughly 
speaking, these different patterns have the same “envelope.” 

We have experimented with the best location for the interface surface Sl. This is 
a trade-off between the two types of approximation-Bessel series and piecewise 
linear spline. The best efficiency is obtained by using the modal expansion over as 
large a region as possible. 

6. UNIQUENESS 

We conclude by showing that a slight modification of the standard proof shows 
that uniqueness holds for the boundary value problem of Section 2. In this section 
we will use subscript notation for partial derivatives. Let w denote the difference of 
two solutions to this boundary value problem. Then w is in class C2(Q) n C’(a), 
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dw + k*w =O, in Q, with k real, the normal derivative of w vanishes on S2, w 
satisfies the radiation condition at infinity, and 

and 

w = f R(n) J,(A(n) r) eimo, 
II=0 

w, = 2 (-Z(n)) R(n) J,(l(n) Y) eims, z=o, 06r61. 
fl=O 

Let S, denote the sphere of radius p centered at the origin. Then there is a p. > 0 so 
that Sl + S2 is in the interior of S, for all p ape. For p >po let 52, denote the 
domain interior to S, and exterior to Sl + S2. The Green’s second identity applied 
to w and W, the conjugate of w, yields 

o’j,~(wdw-wdw)dx=~s,+s2+s (wW,-WwJdS, 
P 

where q denotes the normal pointing out of Q,. It follows that 

I SP 
(Ww, - ww,) dS = jsl (Ww, - ww,) dS 

= -4ni Nci- ’ (k* - @z))“* IR(n)l* j; r dr(J,(l(n) r))*. 
ll=O 

Now w satisfies the radiation condition at infinity hence lim, _ c*i R(p) = 0 where 

w=ls, I wp - ikwl* dS 

= 1 
SP 

Iw,~2dS+k2]so ~w~2dS+ik~s,(Ivwp-w~p)dS. 

These last two equations yield 

R(p)=f lw,j*dS+k*j lwl*dS+kC 
SP SP 

where C > 0 is a constant independent of p. It follows that 

lim I lwl* dS=O. 
p-00 s, 

But then the first lemma of F. Rellich [ 131 implies that w vanishes for p > po. Since 
52 is connected and w is analytic, it follows that w vanishes in Q. This completes the 
uniqueness proof. 
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